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Abstract---Drones are effective for reducing human activity
and interactions by performing tasks such as exploring and
inspecting new environments, monitoring resources and deliv-
ering packages. During the current COVID-19 pandemic, and
any similar outbreaks in the future, drones can be arranged
and set up to help and improve the everyday lives of people
by delivering packages and taking samples to hospitals. One
important issue of utilizing drones is tackling fault of the system.
In this project, we plan to build and optimize the performance of
a network which will give feedback to the drone in the presence
of external and internal fault to maintain a safe operation for
it. We frame our problem as a binary classification task where
the label ”0” would correspond to a ’not faulty” system and a
label ”’1” corresponds to a ’faulty” system and plan to apply
deep learning methods to achieve this.
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I. INTRODUCTION [1]

In the last decay, drone and quadcopters which has been
considered in Unmanned Aerial Vehicle (UAV) family have
drawn attraction to themselves due to their benefits. The
main benefits of them are increasing robustness, reliability
and stability, resource consumption saving and time saving.

The main application of drones are inspection and explor-
ing new environment, resource management, computational
biology, space discoveries, grid computing and manufacturing
applications [2]. During the COVID-19 pandemic and similar
outbreaks in the future, drones can be set up to improve the
everyday lives of people. Drones are effective at reducing
human interaction, which is crucial in times of pandemic.
To reduce the risk of coronavirus infection, governments
have asked and encouraged people to remain in their homes.
But then, there should be a way to provide services and
support for people in their homes. Drones can be used for
that purpose by facilitating contact-free interactions with
healthcare professionals, such as transporting blood or urine
samples, and delivering medical supplies like medicine or
healthcare devices. During a pandemic, hospitals are potential
vectors of contamination, so drones provide an efficient
contact-free way to transport critical and necessary medical
supplies [3]. Although medical supply delivery has been
achieved by the commercial company DJI [4], there are still
many challenges, some of which we focus on in this project.
To reach a goal and accomplish the task, drone needs to
decide based on its states and status which can be considered
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like linear and angular position and velocity of the drone, its
battery usage, heat and some other criteria.

Despite the progress in the area of control, navigation and
target detection, there has been still challenges like fault
detection during the process of accomplishing the task which
is the focus of this paper.

A fault is an unexpected change in the system of the drone
causing unacceptable deviation from the normal operation and
behavior. In such event, the robot may become uncontrollable,
can not accomplish the defined task and cause damage to its
infrastructure as well as to humans [5].

II. RELATED WORK [1]

In this section we discuss some prior work for the Drone
Fault Detection task and a brief overview of how our
contribution is different from theirs.

Previous work in Drone Fault Detection task has utilized
classical machine learning algorithms and statistical modelling
techniques. For example, [6] uses GPS data with Generalized
Linear Mixed Model (GLMM)to predict stress from GPS
traces via the GStress model. In [7], the authors used sensory
data and clustering method to identify activities of a flying
drone like; moving forward, backward, flying down, up and
etc. In [8], they used a classification method to predict the
fault in drones. In [9] and [10], they just used IMU data to
find the fault in the system.

Our work is different from these in two ways: 1) We
apply a concept borrowed from Multi-task learning(MTL),
known as ordering techniques, to enhance the performance
of Convolutional Neural Networks(CNNs) that outperforms
classical machine learning algorithms and 2) To train these
models, we gather and label the sensory data using a Parrot
Bebop 2 drone and also include some novel features for the
same as discussed in the sections below.

III. DATASET EXPLORATION AND OVERVIEW

In this section, we describe some details about our dataset
such the ratio of the faulty v/s not faulty labels, the
correlation of various features with the true label(faulty)
and the distribution of the features.

Our dataset consists of 10813 data points out of which
24.49%(2640) are faulty and 75.6%(8173) are not faulty as
shown in Figure 2. In other words, the dataset is highly
imbalanced i.e the number of not faulty samples is almost
three times than the number of faulty samples. To show the
robustness of our models, we will compute different metrics
including Precision, Recall, F1 and AUC-ROC scores in
addition to the standard accuracy scores. The updated version



Fig. 1: Parrot Bebop 2 Drone used to collect the dataset)

of our dataset now has the following 18 features(Previously
we just had 13 features):

Time interval
Normalized-X-position
Normalized-y-position
Normalized-z-position
Normalized-phi-angles

Normalized-theta-angles
Normalized-psai-angles
Normalized-x-velocity
Normalized-y-velocity
Normalized-z-velocity
Normalized-phi-velocity
Normalized-theta-velocity
Normalized-psai-velocity
Normalized-Temperature
Normalized-wind-speed
Normalized-Bent-propeller-degree
Normalized-Battery-Percentage
Normalized-Path-Percentage-traverse

Features in bold are the novel features we add to our
dataset in the new version. Inclusion of these features in our
proposed method improves the performance as discussed in
the results section later.

Proportion of faulty v/s not faulty samples in the dataset

Not Faulty

Fig. 2: A pie-chart showing the ratio of faulty v/s not faulty samples
in our dataset

Below we discuss some statistics extracted from the dataset

which may provide a much better understanding of our
collected data and its distribution.

Figure 3 shows the correlation of each feature with the
target label(faulty). Values greater than O show a positive
correlation and values less than 0 show a negative correlation
between the feature and the target label.

Correlation of features with the true label(faulty)
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Fig. 3: Correlation of features with the target label. Here values >
0 signifies +ve correlation and values < O signifies -ve correlation

In many instances, it is also important to understand the
distribution of the data we wish to model. This helps us
interpret a machine learning models’ prediction and also
enables us to debug and validate its performance. Figure 4,
explains the distribution of a subset of features. The top row
shows the distribution of features with positive correlation and
bottom row shows the distribution of features with negative
correlation. We can observe a clear distinction between the
distributions of each feature when categorized as faulty v/s
not faulty samples.
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Fig. 4: Distribution of features faulty v/s not faulty: Top row is
features with +ve correlation and bottom row are features with -ve
correlation

IV. TECHNICAL CHALLENGES WITH CONVOLUTIONAL
NEURAL NETWORKS

In our milestone report [11] we explored why deep learning
techniques have be shown to outperform many classical
machine learning algorithms and other statistical modeling
approaches and the reasons why they are difficult to apply




to the Drone Fault Detection task. We also looked at why it
is difficult to collect data for the Drone Fault Detection task
and how existing labeling tools and services are not the best
solutions.

In this section we explore why vanilla Convolutional Neural
Networks do not perform well for the Fault Detection task
and our approach to fix it.

Convolutional Neural Networks differ from Feedforward
Neural Networks in 2 ways: 1) They utilize kernels/filters
which are only connected to a small local region in the
previous feature representation rather than being connected to
all of them. This lets them encode certain properties specific
to a particular region in the input feature. 2) This also makes
them space efficient and reduces the number of parameters
in the networks thus making inference predictions faster
compared to feedforward neural networks.

CNN transforms a N-dimensional tensor to another K-
dimensional tensor where N and K depend on the filter/kernel,
pooling and padding layer size(these are all hyperparameters
of the model and can affect the model performance in different
ways). These operations are called convolutions(thus the
name CNN) that transform one set of features to another
through a differentiable approximation function or non-linear
activation functions. CNNs have enabled tremendous progress
in many computer vision tasks such as object detection, image
segmentation, image classification [12] etc.

Fig. 5: Convolutional Neural Network

In spite of this progress, CNN do not perform well on
tabular datasets i.e. 1-dimension data. This is due to the fact
that CNNs expect the input features to be spatially correlated.
In simpler terms, they can only extract features from the
input data when the columns are contiguous and there is a
local relation between the features. For example, consider
an image of a dog. If we are trying to identify the nose of
a dog, then the pixels adjacent to the body of the dog do
not matter. If one were to replace the pixels near the nose
with some arbitrary pixels from the anywhere in the image,
we would not be able to identify the nose since the nose in
the image would cease to exist. On the other hand, consider
the set of features for the fault detection task which is a 1-
Dimensional vector. If we were to switch the position of the
velocity feature with the position feature, the data would still
remain the same since the relative position of columns does
not matter. In such a case there is no correlation between the
feature set and hence CNN cannot extract any distinguishable
features from the dataset.

V. CONTRIBUTION AND RESULTS

We now present our proposed method which improves the
performance of vanilla CNN for the faulty detection task. In
general, we hypothesize that this method should work for

any tabular dataset i.e 1-Dimensional dataset. Our approach
is based on a concept known as Ordering, derived from the
multi-task learning domain in deep learning. In the previous
section we discussed that CNNs do not perform well on
1D data due to the absence of spatial locality. We fix this
with a technique we introduce as “Upsampled Ordering”.
The basic idea of our solution is to reorder the set of input
features in a way such that they transform as contiguous
features. This is achieved by first upsampling(or increasing)
the set of input features to a fixed integer through a fully-
connected feedforward layer. We then reshape the features
we obtained from the previous step to some fixed number
of vectors where each vector consists of a contiguous set of
K-dimension tensors. Repeating this process x times(where
X is a hyperparameter of the network), the original set of 1-
Dimensional data is transformed to a K-dimension contiguous
tensor which can be furthered classified using a softmax layer
for our binary classification task.

Below we present the results of our model and compare it
with the baselines machine learning models based on accuracy,
precision, recall, F1-score and most importantly, AUC-ROC
score which explain model performance at various thresholds.
We compare our proposed method Convolutional Neural
Network with Upsampled Ordering(CNN-UO) with 4 classical
machine learning algorithms - Naive Bayes(NB), Support
Vector Machines(SVM), Logistic Regression(LR), Logistic
Regression with Polynomial Kernel(LR-PK) and a vanilla
Convolutional Neural Network(CNN).

TABLE I: Comparison of various methods with the proposed method

Model Precision Recall F1 Score Accuracy AUC-ROC
NB 0.806 0.810 0.808 0.859 0.810
SVM 0.946 0.854 0.889 0.927 0.854
LR 0.916 0.905 0911 0.936 0.905
LR-PK 0.918 0.906 0912 0.937 0.906
CNN 0.926 0.914 0.919 0.927 0914
CNN-UO 0.946 0.943 0.944 0.959 0.943

All models are trained with the full set of 18 features.
The table above shows that our proposed method - CNN
with upsampled ordering outperform all models including
vanilla CNN mode. Figure 6 shows the Receiver Operating
Curve(ROC) at various threshold values for all models.

VI. CONCLUSION AND FUTURE WORK

In this report we discussed prior work for the Drone Fault
Detection task, some details about our technical contributions
including our proposed method and manually collected dataset
and also why applying deep learning techniques to this task is
still a challenge. We also explained various details about our
proposed method and how it enhances a vanilla Convolutional
Neural Network based on Fl-scores and ROC graphs. In the
future work we would like to frame the fault detection task
as a time-series classification/prediction where, in addition
to using the current sample as input to the proposed method,
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Fig. 6: Comparison of ROC curves of various models

we also incorporate previous information and apply recurrent
neural networks to this task.

REFERENCES

[1] A. Shamshirgaran and A. Bhatia, ‘‘Drone external and internal fault
detection based on ros topics;theory, method and experimental result,””
in Final project report 1, 2021.

[2] A. Shamshirgaran and F. Abdollahi, ‘‘Dynamic coverage control via
underactuated autonomous underwater vehicles in unknown 3D environ-
ment,”” in 4th International Conference on Control, Instrumentation,
and Automation (ICCIA), pp. 333--338, 2016.

[3] A. Shamshirgaran, H. Javidi, and D. Simon, ‘‘Evolutionary algorithms
for multi-objective optimization of drone controller parameters,”” arXiv
preprint arXiv:2105.08650, 2021.

[4] “‘Innovating to combat COVID-19 by DJI”,”” 2017. Last accessed 21
September 2020.

[5] R. Isermann, Fault-diagnosis systems: an introduction from fault
detection to fault tolerance. Springer Science & Business Media,
2006.

[6] S. Vhaduri, A. Ali, M. Sharmin, K. Hovsepian, and S. Kumar,
“‘Estimating drivers’ stress from gps traces,”” in Proceedings of
the 6th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, pp. 1--8, ACM, 2014.

[71 R. Bartak and M. Vomlelova, ‘‘Using machine learning to identify

activities of a flying drone from sensor readings,”” in The Thirtieth

International Flairs Conference, 2017.

A. Manukyan, M. A. Olivares-Mendez, T. F. Bissyandé, H. Voos,

and Y. Le Traon, ‘“Uav degradation identification for pilot noti-

fication using machine learning techniques,”” in 2016 IEEE 2Ist

International Conference on Emerging Technologies and Factory

Automation (ETFA), pp. 1--8, IEEE, 2016.

V. Sadhu, S. Zonouz, and D. Pompili, ‘‘On-board deep-learning-based

unmanned aerial vehicle fault cause detection and identification,”’

in 2020 IEEE International Conference on Robotics and Automation

(ICRA), pp. 5255--5261, IEEE, 2020.

[10] M. Bronz, E. Baskaya, D. Delahaye, and S. Puechmore, ‘‘Real-time
fault detection on small fixed-wing uavs using machine learning,”” in
2020 ATAA/IEEE 39th Digital Avionics Systems Conference (DASC),
pp. 1--10, IEEE, 2020.

[11] A. Shamshirgaran and A. Bhatia, ‘‘Drone external and internal fault
detection based on ros topics; milestone report,”” in Final project report
2, 2021.

[12] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,”’ 2015.

[8

[t}

[9

—




	INTRODUCTION Azinreport
	Related Work Azinreport
	Dataset exploration and overview
	Technical Challenges with Convolutional Neural Networks 
	Contribution and Results
	Conclusion and Future Work
	References

